Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1383113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646530

RESUMO

It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects of inflammatory processes on bone formation are less studied. Therefore, we investigated the effect of locally induced inflammation on bone formation. Toll-like receptor (TLR) 2 agonists LPS from Porphyromonas gingivalis and PAM2 were injected once subcutaneously above mouse calvarial bones. After five days, both agonists induced bone formation mainly at endocranial surfaces. The injection resulted in progressively increased calvarial thickness during 21 days. Excessive new bone formation was mainly observed separated from bone resorption cavities. Anti-RANKL did not affect the increase of bone formation. Inflammation caused increased bone formation rate due to increased mineralizing surfaces as assessed by dynamic histomorphometry. In areas close to new bone formation, an abundance of proliferating cells was observed as well as cells robustly stained for Runx2 and alkaline phosphatase. PAM2 increased the mRNA expression of Lrp5, Lrp6 and Wnt7b, and decreased the expression of Sost and Dkk1. In situ hybridization demonstrated decreased Sost mRNA expression in osteocytes present in old bone. An abundance of cells expressed Wnt7b in Runx2-positive osteoblasts and ß-catenin in areas with new bone formation. These data demonstrate that inflammation, not only induces osteoclastogenesis, but also locally activates canonical WNT signaling and stimulates new bone formation independent on bone resorption.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inflamação , Osteogênese , Receptor 2 Toll-Like , Via de Sinalização Wnt , Animais , Camundongos , Osteogênese/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Inflamação/metabolismo , Porphyromonas gingivalis , Lipopolissacarídeos , Osteoblastos/metabolismo , Osteoblastos/imunologia , Osteócitos/metabolismo , Reabsorção Óssea/metabolismo , Osteoclastos/metabolismo , Osteoclastos/imunologia , Masculino , Proteínas Wnt/metabolismo , Crânio , Camundongos Endogâmicos C57BL
2.
J Biol Chem ; : 107308, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657862

RESUMO

A deleterious effect of elevated levels of vitamin A on bone health has been reported in numerous clinical studies. Mechanistic studies in rodents have shown that numbers of periosteal osteoclasts are increased, while endocortical osteoclasts are simultaneously decreased by vitamin A treatment. These observations indicate that osteoclastogenesis on the endocortical and periosteal surfaces of bone is differentially controlled by vitamin A. The present study investigated the in vitro and in vivo effect of all-trans retinoic acid (ATRA), the active metabolite of vitamin A, on periosteal osteoclast progenitors. Mouse calvarial bone cells were cultured in media containing ATRA, with or without the osteoclastogenic cytokine RANKL, on plastic dishes or bone discs. Whereas ATRA did not stimulate osteoclast formation alone, the compound robustly potentiated the formation of RANKL-induced bone resorbing osteoclasts. This effect was due to stimulation by ATRA (EC50 ∼3nM) on the numbers of macrophages/osteoclast progenitors in the bone cell cultures, as assessed by mRNA and protein expression of several macrophage and osteoclast progenitor cell markers, such as M-CSF receptor, RANK, F4/80 and CD11b, as well as by FACS-analysis of CD11b+/F480+/Gr1- cells. The stimulation of macrophage numbers in the periosteal cell cultures was not mediated by increased M-CSF or IL-34. In contrast, ATRA did not enhance macrophages in bone marrow cell cultures. Importantly, ATRA treatment upregulated the mRNA expression of several macrophage-related genes also in the periosteum of tibia in adult mice. These observations demonstrate a novel mechanism by which vitamin A enhances osteoclast formation specifically on periosteal surfaces.

3.
Invest New Drugs ; 42(2): 207-220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427117

RESUMO

It has previously been demonstrated that the polybisphosphonate osteodex (ODX) inhibits bone resorption in organ-cultured mouse calvarial bone. In this study, we further investigate the effects by ODX on osteoclast differentiation, formation, and function in several different bone organ and cell cultures. Zoledronic acid (ZOL) was used for comparison. In retinoid-stimulated mouse calvarial organ cultures, ODX and ZOL significantly reduced the numbers of periosteal osteoclasts without affecting Tnfsf11 or Tnfrsf11b mRNA expression. ODX and ZOL also drastically reduced the numbers of osteoclasts in cell cultures isolated from the calvarial bone and in vitamin D3-stimulated mouse crude bone marrow cell cultures. These data suggest that ODX can inhibit osteoclast formation by inhibiting the differentiation of osteoclast progenitor cells or by directly targeting mature osteoclasts. We therefore assessed if osteoclast formation in purified bone marrow macrophage cultures stimulated by RANKL was inhibited by ODX and ZOL and found that the initial formation of mature osteoclasts was not affected, but that the bisphosphonates enhanced cell death of mature osteoclasts. In agreement with these findings, ODX and ZOL did not affect the mRNA expression of the osteoclastic genes Acp5 and Ctsk and the osteoclastogenic transcription factor Nfatc1. When bone marrow macrophages were incubated on bone slices, ODX and ZOL inhibited RANKL-stimulated bone resorption. In conclusion, ODX does not inhibit osteoclast formation but inhibits osteoclastic bone resorption by decreasing osteoclast numbers through enhanced cell death of mature osteoclasts.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Camundongos , Osteoclastos/metabolismo , Osteogênese , Medula Óssea , Células Cultivadas , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Macrófagos/metabolismo , Diferenciação Celular , Morte Celular , Ácido Zoledrônico/farmacologia , Ácido Zoledrônico/metabolismo , RNA Mensageiro/metabolismo , Ligante RANK/farmacologia , Ligante RANK/metabolismo
4.
Nat Genet ; 55(11): 1820-1830, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37919453

RESUMO

Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.


Assuntos
Antebraço , Fraturas Ósseas , Animais , Camundongos , Estudo de Associação Genômica Ampla , Fraturas Ósseas/genética , Densidade Óssea/genética , Fatores de Risco
5.
Cytokine ; 172: 156399, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898012

RESUMO

Lipoproteins are immunostimulatory bacterial components suggested to participate in inflammation-induced bone loss in periodontal disease through stimulation of osteoclast differentiation. Toll-like receptor 2 activation by Pam2CSK4 (PAM2), known to mimic bacterial lipoproteins, was previously shown to enhance periodontal bone resorption in mice. The anti-inflammatory cytokine interleukin-4 (IL-4) is a known inhibitor of RANKL-induced bone resorption in vitro. Here, we have investigated whether IL-4 could decrease PAM2-induced periodontal bone loss and osteoclastogenesis in vivo. In a model of periodontitis induced by gingival injections of PAM2 in mice, concomitant injections of IL-4 reduced bone loss. Histologically, IL-4 reduced the recruitment of inflammatory cells and the formation of TRAP+ osteoclasts stimulated by PAM2. Mouse bone marrow macrophages (BMMs) and neonatal calvarial osteoblasts were used to assess the effect of IL-4 on PAM2-induced osteoclastogenesis in vitro. In RANKL-primed BMMs stimulated by PAM2 Nfatc1, Ctsk, and Acp5 gene expression was up-regulated and resulted in robust formation of TRAP+ multinucleated osteoclasts, effects which were impaired by IL-4. These effects were mediated by impairment in PAM2-induced c-fos expression. In primary calvarial osteoblast cultures, IL-4 decreased PAM2-induced Tnfsf11 (encoding RANKL) mRNA and enhanced Tnfrsf11b (encoding OPG) expression. Our data demonstrate that the osteoprotective effect by IL-4 on lipoprotein-induced periodontal disease occurs through the inhibition of osteoclastogenesis by three mechanisms, one by acting directly on osteoclast progenitors, another by acting indirectly through decreasing the expression of osteoclast-regulating cytokines in osteoblasts and a third by decreasing inflammation.


Assuntos
Perda do Osso Alveolar , Reabsorção Óssea , Periodontite , Animais , Camundongos , Interleucina-4/metabolismo , Osteoclastos/metabolismo , Reabsorção Óssea/metabolismo , Citocinas/metabolismo , Periodontite/metabolismo , Perda do Osso Alveolar/metabolismo , Inflamação/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular
6.
EBioMedicine ; 91: 104546, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023531

RESUMO

BACKGROUND: Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS: To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS: B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION: B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING: Found in acknowledgements.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Densidade Óssea , N-Acetilgalactosaminiltransferases , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos , Densidade Óssea/genética , Glucocorticoides/farmacologia , Glicosilação , Humanos
7.
Vitam Horm ; 120: 231-270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35953112

RESUMO

Osteoporosis is a significant health problem, with skeletal fractures increasing morbidity and mortality. Excess glucocorticoids (GC) represents the leading cause of secondary osteoporosis. The first phase of glucocorticoid-induced osteoporosis is increased bone resorption. In this Chapter, in vitro studies of the direct glucocorticoid receptor (GR) mediated cellular effects of GC on osteoclasts to affect bone resorption and indirect effects on osteoblast lineage cells to increase the RANKL/OPG ratio and stimulate osteoclastogenesis and bone resorption are reviewed in detail, together with detailed descriptions of in vivo effects of GC in different portions of the skeleton in research animals and humans. Brief sections are devoted to contrasting functions of GC in osteonecrosis, vitamin D formation, in vitro and in vivo bone resorptive actions dependent on vitamin D receptor and vitamin D toxicity, as well as the molecular basis of GR action. Included are also more detailed assessments of the interactions of GC with the major calcium regulating hormones, 1,25(OH)2-vitamin D3 and parathyroid hormone, describing the in vitro increases in RANKL/OPG ratios, osteoclastogenesis and synergistic bone resorption that occurs when GC is combined with either 1,25(OH)2-vitamin D3 or parathyroid hormone. Additionally, a molecular basic for the synergistic interaction of GC with 1,25(OH)2-vitamin D3 is provided along with a suggested molecular basic for the interaction between GC and parathyroid hormone.


Assuntos
Reabsorção Óssea , Osteoporose , Animais , Reabsorção Óssea/induzido quimicamente , Cálcio , Hormônios e Agentes Reguladores de Cálcio/farmacologia , Colecalciferol/farmacologia , Glucocorticoides/efeitos adversos , Humanos , Osteoclastos/fisiologia , Hormônio Paratireóideo/farmacologia
8.
Arch Osteoporos ; 17(1): 85, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739404

RESUMO

This study includes 1005 men from the Gothenburg part of the Osteoporotic Fracture in Men Study (MrOS). Included are 66 men with anemia (hemoglobin < 130 g/L). The follow-up time was up to 16 years, and the main results are that anemia is associated with all fractures and non-vertebral osteoporotic fractures. INTRODUCTION: Anemia and osteoporotic fractures are conditions that are associated with increased morbidity and mortality. Clinical studies have suggested that anemia can be used as a predictor of future osteoporotic fractures. METHOD: Men from the Osteoporotic Fractures in Men Study (MrOS) Sweden, Gothenburg, with available hemoglobin (Hb) values (n = 1005, median age 75.3 years (SD 3.2)), were included in the current analyses. Of these, 66 suffered from anemia, defined as Hb < 130 g/L. Median follow-up time for fracture was 10.1 years and the longest follow-up time was 16.1 years. RESULTS: Men with anemia had, at baseline, experienced more falls and had a higher prevalence of diabetes, cancer, prostate cancer, hypertension, and stroke. Anemia was not statistically significantly associated with bone mineral density (BMD). Men with anemia had higher serum levels of fibroblast growth factor 23 (iFGF23) (p < 0.001) and phosphate (p = 0.001) and lower serum levels of testosterone (p < 0.001) and estradiol (p < 0.001). Moreover, men with anemia had an increased risk of any fracture (hazard ratio (HR) 1.97, 95% CI 1.28-3.02) and non-vertebral osteoporotic fracture (HR 2.15, 95% CI 1.18-3.93), after adjustment for age and total hip BMD, in 10 years. The risk for any fracture was increased in 10 and 16 years independently of falls, comorbidities, inflammation, and sex hormones. The age-adjusted risk of hip fracture was increased in men with anemia (HR 2.32, 95% CI 1.06-5.12), in 10 years, although this was no longer statistically significant after further adjustment for total hip BMD. CONCLUSIONS: Anemia is associated with an increased risk for any fracture and non-vertebral osteoporotic fracture in elderly men with a long follow-up time. The cause is probably multifactorial and our results support that anemia can be used as a predictor for future fracture.


Assuntos
Anemia , Fraturas por Osteoporose , Idoso , Anemia/epidemiologia , Densidade Óssea , Hemoglobinas , Humanos , Incidência , Masculino , Fraturas por Osteoporose/etiologia , Fatores de Risco , Suécia/epidemiologia
9.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328707

RESUMO

Oncostatin M (OSM), which belongs to the IL-6 family of cytokines, is the most potent and effective stimulator of osteoclast formation in this family, as assessed by different in vitro assays. Osteoclastogenesis induced by the IL-6 type of cytokines is mediated by the induction and paracrine stimulation of the osteoclastogenic cytokine receptor activator of nuclear factor κ-B ligand (RANKL), expressed on osteoblast cell membranes and targeting the receptor activator of nuclear factor κ-B (RANK) on osteoclast progenitor cells. The potent effect of OSM on osteoclastogenesis is due to an unusually robust induction of RANKL in osteoblasts through the OSM receptor (OSMR), mediated by a JAK-STAT/MAPK signaling pathway and by unique recruitment of the adapter protein Shc1 to the OSMR. Gene deletion of Osmr in mice results in decreased numbers of osteoclasts and enhanced trabecular bone caused by increased trabecular thickness, indicating that OSM may play a role in physiological regulation of bone remodeling. However, increased amounts of OSM, either through administration of recombinant protein or of adenoviral vectors expressing Osm, results in enhanced bone mass due to increased bone formation without any clear sign of increased osteoclast numbers, a finding which can be reconciled by cell culture experiments demonstrating that OSM can induce osteoblast differentiation and stimulate mineralization of bone nodules in such cultures. Thus, in vitro studies and gene deletion experiments show that OSM is a stimulator of osteoclast formation, whereas administration of OSM to mice shows that OSM is not a strong stimulator of osteoclastogenesis in vivo when administered to adult animals. These observations could be explained by our recent finding showing that OSM is a potent stimulator of the osteoclastogenesis inhibitor WNT16, acting in a negative feedback loop to reduce OSM-induced osteoclast formation.


Assuntos
Oncostatina M/metabolismo , Osteoclastos , Ligante RANK , Animais , Diferenciação Celular , Retroalimentação , Interleucina-6/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Proteínas Wnt/metabolismo
10.
Am J Physiol Endocrinol Metab ; 322(3): E211-E218, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35068191

RESUMO

Osteoporosis is an age-dependent serious skeletal disease that leads to great suffering for the patient and high social costs, especially as the global population reaches higher age. Decreasing estrogen levels after menopause result in a substantial bone loss and increased fracture risk, whereas estrogen treatment improves bone mass in women. RSPO3, a secreted protein that modulates WNT signaling, increases trabecular bone mass and strength in the vertebrae of mice, and is associated with trabecular density and risk of distal forearm fractures in humans. The aim of the present study was to determine if RSPO3 is involved in the bone-sparing effect of estrogens. We first observed that estradiol (E2) treatment increases RSPO3 expression in bone of ovariectomized (OVX) mice, supporting a possible role of RSPO3 in the bone-sparing effect of estrogens. As RSPO3 is mainly expressed by osteoblasts in the bone, we used a mouse model devoid of osteoblast-derived RSPO3 (Runx2-creRspo3flox/flox mice) to determine if RSPO3 is required for the bone-sparing effect of E2 in OVX mice. We confirmed that osteoblast-specific RSPO3 inactivation results in a substantial reduction in trabecular bone mass and strength in the vertebrae. However, E2 increased vertebral trabecular bone mass and strength similarly in mice devoid of osteoblast-derived RSPO3 and control mice. Unexpectedly, osteoblast-derived RSPO3 was needed for the full estrogenic response on cortical bone thickness. In conclusion, although osteoblast-derived RSPO3 is a crucial regulator of vertebral trabecular bone, it is required for a full estrogenic effect on cortical, but not trabecular, bone in OVX mice. Thus, estradiol and RSPO3 regulate vertebral trabecular bone mass independent of each other.NEW & NOTEWORTHY Osteoblast-derived RSPO3 is known to be a crucial regulator of vertebral trabecular bone. Our new findings show that RSPO3 and estrogen regulate trabecular bone independent of each other, but that RSPO3 is necessary for a complete estrogenic effect on cortical bone.


Assuntos
Fraturas Ósseas , Osteoporose , Animais , Densidade Óssea , Osso Esponjoso/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Humanos , Camundongos , Osteoporose/genética , Osteoporose/metabolismo , Ovariectomia , Trombospondinas/genética , Trombospondinas/farmacologia
11.
J Inflamm Res ; 14: 4723-4741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566421

RESUMO

BACKGROUND: Bone loss is often observed adjacent to inflammatory processes. The WNT signaling pathways have been implicated as novel regulators of both immune responses and bone metabolism. WNT16 is important for cortical bone mass by inhibiting osteoclast differentiation, and we have here investigated the regulation of WNT16 by several members of the pro-inflammatory gp130 cytokine family. METHODS: The expression and regulation of Wnt16 in primary murine cells were studied by qPCR, scRNAseq and in situ hybridization. Signaling pathways were studied by siRNA silencing. The importance of oncostatin M (OSM)-induced WNT16 expression for osteoclastogenesis was studied in cells from Wnt16-deficient and wild-type mice. RESULTS: We found that IL-6/sIL-6R and OSM induce the expression of Wnt16 in primary mouse calvarial osteoblasts, with OSM being the most robust stimulator. The induction of Wnt16 by OSM was dependent on gp130 and OSM receptor (OSMR), and downstream signaling by the SHC1/STAT3 pathway, but independent of ERK. Stimulation of the calvarial cells with OSM resulted in enhanced numbers of mature, oversized osteoclasts when cells were isolated from Wnt16 deficient mice compared to cells from wild-type mice. OSM did not affect Wnt16 mRNA expression in bone marrow cell cultures, explained by the finding that Wnt16 and Osmr are expressed in distinctly different cells in bone marrow, nor was osteoclast differentiation different in OSM-stimulated bone marrow cell cultures isolated from Wnt16-/- or wild-type mice. Furthermore, we found that Wnt16 expression is substantially lower in cells from bone marrow compared to calvarial osteoblasts. CONCLUSION: These findings demonstrate that OSM is a robust stimulator of Wnt16 mRNA in calvarial osteoblasts and that WNT16 acts as a negative feedback regulator of OSM-induced osteoclast formation in the calvarial bone cells, but not in the bone marrow.

12.
Nat Commun ; 12(1): 4923, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389713

RESUMO

With increasing age of the population, countries across the globe are facing a substantial increase in osteoporotic fractures. Genetic association signals for fractures have been reported at the RSPO3 locus, but the causal gene and the underlying mechanism are unknown. Here we show that the fracture reducing allele at the RSPO3 locus associate with increased RSPO3 expression both at the mRNA and protein levels, increased trabecular bone mineral density and reduced risk mainly of distal forearm fractures in humans. We also demonstrate that RSPO3 is expressed in osteoprogenitor cells and osteoblasts and that osteoblast-derived RSPO3 is the principal source of RSPO3 in bone and an important regulator of vertebral trabecular bone mass and bone strength in adult mice. Mechanistic studies revealed that RSPO3 in a cell-autonomous manner increases osteoblast proliferation and differentiation. In conclusion, RSPO3 regulates vertebral trabecular bone mass and bone strength in mice and fracture risk in humans.


Assuntos
Osso Esponjoso/metabolismo , Fraturas Ósseas/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Trombospondinas/genética , Animais , Densidade Óssea , Osso Esponjoso/lesões , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Humanos , Análise da Randomização Mendeliana/métodos , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fatores de Risco , Trombospondinas/deficiência
13.
JBMR Plus ; 5(7): e10509, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258505

RESUMO

Ras homologous guanosine triphosphatases (RhoGTPases) control several cellular functions, including cytoskeletal actin remodeling and cell migration. Their activities are downregulated by GTPase-activating proteins (GAPs). Although RhoGTPases are implicated in bone remodeling and osteoclast and osteoblast function, their significance in human bone health and disease remains elusive. Here, we report defective RhoGTPase regulation as a cause of severe, early-onset, autosomal-dominant skeletal fragility in a three-generation Finnish family. Affected individuals (n = 13) presented with multiple low-energy peripheral and vertebral fractures despite normal bone mineral density (BMD). Bone histomorphometry suggested reduced bone volume, low surface area covered by osteoblasts and osteoclasts, and low bone turnover. Exome sequencing identified a novel heterozygous missense variant c.652G>A (p.G218R) in ARHGAP25, encoding a GAP for Rho-family GTPase Rac1. Variants in the ARHGAP25 5' untranslated region (UTR) also associated with BMD and fracture risk in the general population, across multiple genomewide association study (GWAS) meta-analyses (lead variant rs10048745). ARHGAP25 messenger RNA (mRNA) was expressed in macrophage colony-stimulating factor (M-CSF)-stimulated human monocytes and mouse osteoblasts, indicating a possible role for ARHGAP25 in osteoclast and osteoblast differentiation and activity. Studies on subject-derived osteoclasts from peripheral blood mononuclear cells did not reveal robust defects in mature osteoclast formation or resorptive activity. However, analysis of osteosarcoma cells overexpressing the ARHGAP25 G218R-mutant, combined with structural modeling, confirmed that the mutant protein had decreased GAP-activity against Rac1, resulting in elevated Rac1 activity, increased cell spreading, and membrane ruffling. Our findings indicate that mutated ARHGAP25 causes aberrant Rac1 function and consequently abnormal bone metabolism, highlighting the importance of RhoGAP signaling in bone metabolism in familial forms of skeletal fragility and in the general population, and expanding our understanding of the molecular pathways underlying skeletal fragility. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

14.
Am J Physiol Endocrinol Metab ; 320(5): E967-E975, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33749332

RESUMO

Osteoporosis is a common skeletal disease, with increased risk of fractures. Currently available osteoporosis treatments reduce the risk of vertebral fractures, mainly dependent on trabecular bone, whereas the effect on nonvertebral fractures, mainly dependent on cortical bone, is less pronounced. WNT signaling is a crucial regulator of bone homeostasis, and the activity of WNTs is inhibited by NOTUM, a secreted WNT lipase. We previously demonstrated that conditional inactivation of NOTUM in all osteoblast lineage cells increases the cortical but not the trabecular bone mass. The aim of the present study was to determine if NOTUM increasing cortical bone is derived from osteoblast precursors/early osteoblasts or from osteocytes/late osteoblasts. First, we demonstrated Notum mRNA expression in Dmp1-expressing osteocytes and late osteoblasts in cortical bone using in situ hybridization. We then developed a mouse model with inactivation of NOTUM in Dmp1-expressing osteocytes and late osteoblasts (Dmp1-creNotumflox/flox mice). We observed that the Dmp1-creNotumflox/flox mice displayed a substantial reduction of Notum mRNA in cortical bone, resulting in increased cortical bone mass and decreased cortical porosity in femur but no change in trabecular bone volume fraction in femur or in the lumbar vertebrae L5 in Dmp1-creNotumflox/flox mice as compared with control mice. In conclusion, osteocytes and late osteoblasts are the principal source of NOTUM in cortical bone, and NOTUM derived from osteocytes/late osteoblasts reduces cortical bone mass. These findings demonstrate that inhibition of osteocyte/late osteoblast-derived NOTUM might be an interesting pharmacological target to increase cortical bone mass and reduce nonvertebral fracture risk.NEW & NOTEWORTHY NOTUM produced by osteoblasts is known to regulate cortical bone mass. Our new findings show that NOTUM specifically derived by DMP1-expressing osteocytes and late osteoblasts regulates cortical bone mass and not trabecular bone mass.


Assuntos
Densidade Óssea/genética , Esterases/fisiologia , Osteoblastos/metabolismo , Osteócitos/metabolismo , Osteoporose/genética , Animais , Remodelação Óssea/genética , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Osso Cortical/fisiologia , Esterases/genética , Esterases/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/fisiologia , Osteócitos/fisiologia , Osteogênese/genética , Osteoporose/metabolismo
15.
Scand J Immunol ; 93(5): e13009, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33320370

RESUMO

Immunoglobulin G (IgG) is important in clearance and recognition of previously presented antigens and after activation, IgGs can interact with the Fc gamma receptors (FcγRs) on haematopoietic cells, including bone-resorbing osteoclasts. The pathogenicity of IgG, that is the ability to elicit stimulatory effects via FcγRs, can be modulated by attachment of sugar moieties, including sialic acids. Human IgGs and autoantibodies are associated with bone loss in autoimmune disease. However, the impact of polyclonal murine IgG via FcγRs on bone loss is poorly understood. Here, we investigate if heat-aggregated activated murine polyclonal IgG complexes have any direct effects on murine osteoclasts and if they modulate arthritis-mediated bone loss. Using cell cultures of murine osteoclasts, we show that IgG complexes without sialic acids (de-IgG complexes) enhance receptor activator of nuclear factor kappa-Β ligand (RANKL)-stimulated osteoclastogenesis, an effect associated with increased FcγRIII expression. Using an in vivo model of arthritis-mediated bone loss, where IgG complexes were injected into arthritic knees, no effect on the severity of arthritis or the degree of arthritis-mediated bone loss was detected. Interestingly, injection of de-IgG complexes into non-arthritic knees increased osteoclast formation and enhanced bone erosions. Our findings show that activated de-IgG complexes have no additive effect on arthritis-mediated bone loss. However, de-IgG complexes potentiate murine osteoclastogenesis and enhance local bone erosion in non-arthritic bones, further confirming the link between the adaptive immune system and bone.


Assuntos
Artrite Experimental/patologia , Reabsorção Óssea/patologia , Imunoglobulina G/imunologia , Osteogênese/fisiologia , Receptores de IgG/imunologia , Animais , Artrite Experimental/imunologia , Reabsorção Óssea/imunologia , Feminino , Imunoglobulina G/química , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Receptores de IgG/química , Ácidos Siálicos/metabolismo
16.
J Bone Miner Res ; 35(2): 298-305, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31626711

RESUMO

Preclinical studies on the role of erythropoietin (EPO) in bone metabolism are contradictory. Regeneration models indicate an anabolic effect on bone healing, whereas models on physiologic bone remodeling indicate a catabolic effect on bone mass. No human studies on EPO and fracture risk are available. It is known that fibroblast growth factor 23 (FGF23) affects bone mineralization and that serum concentration of FGF23 is higher in men with decreased estimated glomerular filtration rate (eGFR). Recently, a direct association between EPO and FGF23 has been shown. We have explored the potential association between EPO and bone mineral density (BMD), fracture risk, and FGF23 in humans. Plasma levels of EPO were analyzed in 999 men (aged 69 to 81 years), participating in the Gothenburg part of the population-based Osteoporotic Fractures in Men (MrOS) study, MrOS Sweden. The mean ± SD EPO was 11.5 ± 9.0 IU/L. Results were stratified by eGFR 60 mL/min. For men with eGFR ≥60 mL/min (n = 728), EPO was associated with age (r = 0.13, p < 0.001), total hip BMD (r = 0.14, p < 0.001), intact (i)FGF23 (r = 0.11, p = 0.004), and osteocalcin (r = -0.09, p = 0.022). The association between total hip BMD and EPO was independent of age, body mass index (BMI), iFGF23, and hemoglobin (beta = 0.019, p < 0.001). During the 10-year follow-up, 164 men had an X-ray-verified fracture, including 117 major osteoporotic fractures (MOF), 39 hip fractures, and 64 vertebral fractures. High EPO was associated with higher risk for incident fractures (hazard ratio [HR] = 1.43 per tertile EPO, 95% confidence interval [CI] 1.35-1.63), MOF (HR = 1.40 per tertile EPO, 95% CI 1.08-1.82), and vertebral fractures (HR = 1.42 per tertile EPO, 95% CI 1.00-2.01) in a fully adjusted Cox regression model. In men with eGFR<60 mL/min, no association was found between EPO and BMD or fracture risk. We here demonstrate that high levels of EPO are associated with increased fracture risk and increased BMD in elderly men with normal renal function. © 2019 American Society for Bone and Mineral Research.


Assuntos
Fraturas por Osteoporose , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Eritropoetina , Fator de Crescimento de Fibroblastos 23 , Humanos , Rim , Masculino , Fraturas por Osteoporose/epidemiologia , Plasma , Fatores de Risco , Suécia/epidemiologia
17.
FASEB J ; 33(12): 14394-14409, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675485

RESUMO

Glucocorticoid (GC) therapy decreases bone mass and increases the risk of fractures. We investigated interactions between the GC dexamethasone (DEX) and the bone resorptive agents 1,25(OH)2-vitamin D3 (D3) and parathyroid hormone (PTH) on osteoclastogenesis. We observed a synergistic potentiation of osteoclast progenitor cell differentiation and formation of osteoclasts when DEX was added to either D3- or PTH-treated mouse bone marrow cell (BMC) cultures. Cotreatment of DEX with D3 or PTH increased gene encoding calcitonin receptor (Calcr), acid phosphatase 5, tartrate resistant (Acp5), cathepsin K (Ctsk), and TNF superfamily member 11 (Tnfsf11) mRNA, receptor activator of NF-κB ligand protein (RANKL), numbers of osteoclasts on plastic, and pit formation and release of C-terminal fragment of type I collagen from cells cultured on bone slices. Enhanced RANKL protein expression caused by D3 and DEX was absent in BMC from mice in which the GC receptor (GR) was deleted in stromal cells/osteoblasts. Synergistic interactions between DEX and D3 on RANKL and osteoclast formation were present in BMC from mice with attenuated GR dimerization. These data demonstrate that the GR cooperates with D3 and PTH signaling, causing massive osteoclastogenesis, which may explain the rapid bone loss observed with high dosages of GC treatment.-Conaway, H. H., Henning, P., Lie, A., Tuckermann, J., Lerner, U. H. Glucocorticoids employ the monomeric glucocorticoid receptor to potentiate vitamin D3 and parathyroid hormone-induced osteoclastogenesis.


Assuntos
Colecalciferol/farmacologia , Dexametasona/farmacologia , Osteogênese/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Receptores de Glucocorticoides/metabolismo , Animais , Sinergismo Farmacológico , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Ligante RANK/genética , Ligante RANK/metabolismo
18.
Pediatr Endocrinol Rev ; 17(2): 84-99, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31763801

RESUMO

Osteoclasts are multinucleated, giant cells originating from myeloid hematopoetic stem cells. These are the only cells in nature which can resorb bone. Differentiation of mononucleated osteoclast progenitor cells requires stimulation with M-CSF (macrophage colony-stimulating factor) for the cells to proliferate and survive and with RANKL (receptor activator of nuclear factor kappa B ligand) for differentiation along the osteoclastic lineage to cells which eventually fuse to the mature, multinucleated osteoclasts. Therefore, most hormones and cytokines stimulating osteoclastogenesis do so indirectly by regulating the expression in osteoblasts of RANKL and its inhibitory decoy receptor OPG. Antibodies neutralizing RANKL is a common therapy to inhibit excessive osteoclast formation in diseases such as osteoporosis and malignant tumors with skeletal metastasis. Mature osteoclasts resorb bone by stimulating acid release into the resorption lacunae, followed by proteolytic degradation of bone matrix proteins. Loss-of-function mutations of proteins involved in acidification and proteolysis cause osteopetrosis, a disease with sclerotic bone due to non-functional osteoclasts. Osteoclasts are important for a healthy skeleton by removing damaged bone during remodeling of the skeleton, but are also important for modeling of bone, calcium homeostasis and tooth eruption, and possibly also for glucose and fat metabolism. Loss of bone in inflammatory disease, metastasizing tumors and osteoporosis is due to increased RANKL expression and enhanced osteoclast formation. The present overview aims to summarize how osteoclasts are formed and resorb bone in health and disease.


Assuntos
Osteoclastos , Reabsorção Óssea , Humanos , Glicoproteínas de Membrana , Osteoblastos , Receptor Ativador de Fator Nuclear kappa-B
19.
Front Immunol ; 10: 1663, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379855

RESUMO

M-CSF and RANKL are two crucial cytokines stimulating differentiation of mature, bone resorbing, multinucleated osteoclasts from mononucleated progenitor cells in the monocyte/macrophage lineage. In addition to the receptors for M-CSF and RANKL, osteoclast progenitor cells express receptors for several other pro- and anti-osteoclastogenic cytokines, which also regulate osteoclast formation by affecting signaling downstream M-CSF and RANKL receptors. Similar to many other cells originating from myeloid hematopoetic stem cells, also osteoclast progenitors express toll-like receptors (TLRs). Nine murine TLRs are expressed in the progenitors and all, with the exception of TLR2 and TLR4, are downregulated during osteoclastogenesis. Activation of TLR2, TLR4, and TLR9, but not TLR5, in osteoclast progenitors stimulated with M-CSF and RANKL arrests differentiation along the osteoclastic lineage and keeps the cells at a macrophage stage. When the progenitors are primed with M-CSF/RANKL and then stimulated with agonists for TLR2, TLR4, or TLR9 in the presence of M-CSF, but in the absence of RANKL, the cells differentiate to mature, bone resorbing osteoclasts. TLR 2, 4, 5, and 9 are also expressed on osteoblasts and their activation increases osteoclast differentiation by an indirect mechanism through stimulation of RANKL. In mice, treatment with agonists for TLR2, 4, and 5 results in osteoclast formation and extensive bone loss. It remains to be shown the relative importance of inhibitory and stimulatory effects by TLRs on osteoclast progenitors and the role of RANKL produced by TLR stimulated osteoblasts, for the bone resorbing effects in vivo.


Assuntos
Osteoclastos/metabolismo , Células-Tronco/metabolismo , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular/fisiologia , Humanos , Osteoblastos/metabolismo , Ligante RANK/metabolismo
20.
FASEB J ; 33(10): 11163-11179, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31307226

RESUMO

Osteoporosis is a common skeletal disease, affecting millions of individuals worldwide. Currently used osteoporosis treatments substantially reduce vertebral fracture risk, whereas nonvertebral fracture risk, mainly caused by reduced cortical bone mass, has only moderately been improved by the osteoporosis drugs used, defining an unmet medical need. Because several wingless-type MMTV integration site family members (WNTs) and modulators of WNT activity are major regulators of bone mass, we hypothesized that NOTUM, a secreted WNT lipase, might modulate bone mass via an inhibition of WNT activity. To characterize the possible role of endogenous NOTUM as a physiologic modulator of bone mass, we developed global, cell-specific, and inducible Notum-inactivated mouse models. Notum expression was high in the cortical bone in mice, and conditional Notum inactivation revealed that osteoblast lineage cells are the principal source of NOTUM in the cortical bone. Osteoblast lineage-specific Notum inactivation increased cortical bone thickness via an increased periosteal circumference. Inducible Notum inactivation in adult mice increased cortical bone thickness as a result of increased periosteal bone formation, and silencing of Notum expression in cultured osteoblasts enhanced osteoblast differentiation. Large-scale human genetic analyses identified genetic variants mapping to the NOTUM locus that are strongly associated with bone mineral density (BMD) as estimated with quantitative ultrasound in the heel. Thus, osteoblast-derived NOTUM is an essential local physiologic regulator of cortical bone mass via effects on periosteal bone formation in adult mice, and genetic variants in the NOTUM locus are associated with BMD variation in adult humans. Therapies targeting osteoblast-derived NOTUM may prevent nonvertebral fractures.-Movérare-Skrtic, S., Nilsson, K. H., Henning, P., Funck-Brentano, T., Nethander, M., Rivadeneira, F., Coletto Nunes, G., Koskela, A., Tuukkanen, J., Tuckermann, J., Perret, C., Souza, P. P. C., Lerner, U. H., Ohlsson, C. Osteoblast-derived NOTUM reduces cortical bone mass in mice and the NOTUM locus is associated with bone mineral density in humans.


Assuntos
Densidade Óssea/genética , Osso Cortical/metabolismo , Osso Cortical/fisiologia , Esterases/metabolismo , Osteoblastos/metabolismo , Animais , Densidade Óssea/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Esterases/genética , Feminino , Fraturas Ósseas/metabolismo , Fraturas Ósseas/fisiopatologia , Variação Genética/genética , Humanos , Masculino , Camundongos , Osteogênese/genética , Osteogênese/fisiologia , Osteoporose/metabolismo , Osteoporose/fisiopatologia , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...